Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering a fungal peroxidase that degrades lignin at very acidic pH.

Identifieur interne : 000329 ( Main/Exploration ); précédent : 000328; suivant : 000330

Engineering a fungal peroxidase that degrades lignin at very acidic pH.

Auteurs : Elena Fernández-Fueyo [Pays-Bas] ; Francisco J. Ruiz-Due As [Espagne] ; Angel T. Martínez [Espagne]

Source :

RBID : pubmed:25788979

Abstract

BACKGROUND

Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities.

RESULTS

In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn(2+)-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer.

CONCLUSIONS

A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.


DOI: 10.1186/1754-6834-7-114
PubMed: 25788979
PubMed Central: PMC4364632


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering a fungal peroxidase that degrades lignin at very acidic pH.</title>
<author>
<name sortKey="Fernandez Fueyo, Elena" sort="Fernandez Fueyo, Elena" uniqKey="Fernandez Fueyo E" first="Elena" last="Fernández-Fueyo">Elena Fernández-Fueyo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain ; Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain ; Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft</wicri:regionArea>
<wicri:noRegion>2628 BL Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Due As, Francisco J" sort="Ruiz Due As, Francisco J" uniqKey="Ruiz Due As F" first="Francisco J" last="Ruiz-Due As">Francisco J. Ruiz-Due As</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25788979</idno>
<idno type="pmid">25788979</idno>
<idno type="doi">10.1186/1754-6834-7-114</idno>
<idno type="pmc">PMC4364632</idno>
<idno type="wicri:Area/Main/Corpus">000336</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000336</idno>
<idno type="wicri:Area/Main/Curation">000336</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000336</idno>
<idno type="wicri:Area/Main/Exploration">000336</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering a fungal peroxidase that degrades lignin at very acidic pH.</title>
<author>
<name sortKey="Fernandez Fueyo, Elena" sort="Fernandez Fueyo, Elena" uniqKey="Fernandez Fueyo E" first="Elena" last="Fernández-Fueyo">Elena Fernández-Fueyo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain ; Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain ; Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft</wicri:regionArea>
<wicri:noRegion>2628 BL Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Due As, Francisco J" sort="Ruiz Due As, Francisco J" uniqKey="Ruiz Due As F" first="Francisco J" last="Ruiz-Due As">Francisco J. Ruiz-Due As</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn(2+)-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25788979</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering a fungal peroxidase that degrades lignin at very acidic pH.</ArticleTitle>
<Pagination>
<MedlinePgn>114</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1754-6834-7-114</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn(2+)-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fernández-Fueyo</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain ; Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Dueñas</LastName>
<ForeName>Francisco J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martínez</LastName>
<ForeName>Angel T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acidic pH stability</Keyword>
<Keyword MajorTopicYN="N">Catalytic tryptophan</Keyword>
<Keyword MajorTopicYN="N">Lignin model dimer</Keyword>
<Keyword MajorTopicYN="N">Manganese peroxidase</Keyword>
<Keyword MajorTopicYN="N">Versatile peroxidase</Keyword>
<Keyword MajorTopicYN="N">White-rot fungal genomes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25788979</ArticleId>
<ArticleId IdType="doi">10.1186/1754-6834-7-114</ArticleId>
<ArticleId IdType="pii">504</ArticleId>
<ArticleId IdType="pmc">PMC4364632</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2002 May;9(5):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12031662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Mar 24;256(3):500-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Mar 1;386(Pt 2):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 12;47(6):1685-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18201105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1965 Sep;13(5):732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5867653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 May 21;35(20):6418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2008;15(2-3):172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 30;287(49):41053-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Jul 29;1598(1-2):108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Apr 15;237(2):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 03;7(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24387130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jan;31(1):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9987124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 9;35(27):8986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8688436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Dec 1;320 ( Pt 2):369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8973542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72:150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24560615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Jun 14;50(23):5096-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21534568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Apr 1;315 ( Pt 1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Jun;22(3):394-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11304528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 May 15;279(1):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2337347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Aug 19;262(1):297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10448108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 25;268(6):4429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Oct 27;37(43):15097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(2):441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Fernandez Fueyo, Elena" sort="Fernandez Fueyo, Elena" uniqKey="Fernandez Fueyo E" first="Elena" last="Fernández-Fueyo">Elena Fernández-Fueyo</name>
</noRegion>
</country>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Ruiz Due As, Francisco J" sort="Ruiz Due As, Francisco J" uniqKey="Ruiz Due As F" first="Francisco J" last="Ruiz-Due As">Francisco J. Ruiz-Due As</name>
</region>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000329 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000329 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25788979
   |texte=   Engineering a fungal peroxidase that degrades lignin at very acidic pH.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25788979" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020